Universal spaces in the theory of transfinite dimension, II
نویسنده
چکیده
We construct a family of spaces with “nice” structure which is universal in the class of all compact metrizable spaces of large transfinite dimension ω0, or, equivalently, of small transfinite dimension ω0; that is, the family consists of compact metrizable spaces whose transfinite dimension is ω0, and every compact metrizable space with transfinite dimension ω0 is embeddable in a space of the family. We show that the least possible cardinality of such a universal family is equal to the least possible cardinality of a dominating sequence of irrational numbers.
منابع مشابه
A factorization theorem for the transfinite kernel dimension of metrizable spaces
We prove a factorization theorem for transfinite kernel dimension in the class of metrizable spaces. Our result in conjunction with Pasynkov’s technique implies the existence of a universal element in the class of metrizable spaces of given weight and transfinite kernel dimension, a result known from the work of Luxemburg and Olszewski.
متن کامل5 Addition and Subspace Theorems for Asymptotic Large Inductive Dimension
We prove addition and subspace theorems for asymptotic large inductive dimension. We investigate a transfinite extension of this dimension and show that it is trivial. 0. Asymptotic dimension asdim of a metric space was defined by Gromov for studying asymptotic invariants of discrete groups [1]. This dimension can be considered as asymptotic analogue of the Lebesgue covering dimension dim. Dran...
متن کاملThe Transfinite Hausdorff Dimension
Making an extensive use of small transfinite topological dimension trind, we ascribe to every metric space X an ordinal number (or −1 or Ω) tHD(X), and we call it the transfinite Hausdorff dimension of X. This ordinal number shares many common features with Hausdorff dimension. It is monotone with respect to subspaces, it is invariant under bi-Lipschitz maps (but in general not under homeomorph...
متن کاملOn ( transfinite ) small inductive dimension of products ∗
In this paper we study the behavior of the (transfinite) small inductive dimension (trind) ind on finite products of topological spaces. In particular we essentially improve Toulmin’s estimation [T] of trind for Cartesian products.
متن کاملRecursion and Effectivity in the Decomposability Conjecture
Using ideas and results from recursion theory and effective descriptive set theory we provide a partial answer to the Decomposabilty Conjecture in Polish spaces of small inductive dimension. The latter extends earlier work of Motto Ros and Pawlikowski-Sabok. We also state a conjecture, which would allow our arguments to be carried out in all Polish spaces, and we give the analogous results in t...
متن کامل